

Public Products List

Publict Products are off the shelf products. They are not dedicated to specific customers, they are available through ST Sales team, or Distributors, and visible on ST.com

PCN Title: Flip-chip BGA package assembly transfer from SCC to JSCC for STIH310 products.

PCN Reference: MDG/17/10000

Subject: Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

STIH410-EJB	STIH301-SNB	STIH310-PJB
STIH310-YJB	STIH305-YJC	STIH310CYJB
STIH312-DJB	STIH312-SJB	STIH412-DJB
STIH301CRNB	STIH407-BJC	STIH305-BJC
STIH310-DJB	STIH412-BJB	STIH310CKJB
STIH410-DJB	STIH412DHJB	STIH301CVNB
STIH410-LJB	STIH301CYNB	STIH410-BJB
STIH301-BNB	STIH310CBJB	STIH412-HJB
STIH412-SJB	STIH312-YJB	STIH412-EJB
STIH310-EJB	STIH310CSJB	STIH310-IJB
STIH310CTJB	STIH301CPNB	STIH310-NJB
STIH301-DNB	STIH310-SJB	STIH312-LJB
STIH410-VJB	STIH310-BJB	STIH301CMNB

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

Reliability Qualification Plan

MDG Back-end qualification DPG0116-QP JSCC assembly plant Unmolded FCBGA from 162 to 252 with Cu pillar on 28nm LP & FDSOI from SEC

General Information

Package FCBGA 162 to 252

28nm LP Silicon process technology 28nm FDSOI

Bumping Copper pillar

Product division ADL

Cannes 2, Liege2, Affected products

L2A

Locations

Stats-ChipPAC China-JCET plant **Assembly plant location**

Wafer fab location SEC (Samsung)

Bumping site Winstek (former SCT)

Reliability test location ST Grenoble

Reference number DPG0116-QP

DISTRIBUTION LIST

NAME	FUNCTION	LOCATION
Corinne TRIOMPHE	ADL BE QA Engineer	Grenoble
Yves LAVIGNASSE	ADL BE QA Manager	Grenoble
Marie CANTOURNET	ADL Reliability Manager	Grenoble
François LAMOURELLE	ADL BE Operation Manager	Grenoble
Patrick PERILLAT	ADL BE Operation Engineer	Grenoble
Didier JAN	ADL Product QA Manager	Grenoble
Christian MOTTAIS	ADL Product QA Engineer	Grenoble
Sarah BRACKEN	ADL program manager	Grenoble

DOCUMENT HISTORY

Version	Date	Pages	Author	Comment
1.0	Nov 28, 2016	10	C. Triomphe /	External version
			D.Jan	

TABLE OF CONTENTS

1	APPL	ICABLE AND REFERENCE DOCUMENTS	3
2	GLOS	SSARY	3
		ABILITY EVALUATION OVERVIEW	
		OBJECTIVES	
	3.2	DESCRIPTION OF THE CHANGE	2
	3.3	STRATEGY FOR THE QUALIFICATION	5
4		KAGE CHARACTERISTICS	
	4.1	PACKAGE CONSTRUCTION NOTE	5
	4.2	TEST VEHICLES DEFINITION	6
	4.3	PACKAGE BALL OUT	6
5	RELI/	ABILITY TEST PLAN	8
	5.1	SAMPLE SIZE REQUIRED	8
	5.2	LOT DEFINITION	8
	5.3	TEST PLAN SUMMARY	8
6		(AGE ORIENTED TESTS DESCRIPTION	(

Document

1 APPLICABLE AND REFERENCE DOCUMENTS

Short description

reference	
DCG/0001/16 DMS@ST DM00280255	Qualification request
DMS@ST 8498310	Assembly Flowchart
DMS@ST 8525350 DMS@ST 0061692 DMS@ST 8070682 J-STD-020 JESD22-A101 JESD22-A102 JESD22-A103 JESD22-A104 JESD22-A110 JESD22-A113 JESD22-A118 SOP 2.6.2 SOP 2.6.9	DCG Back-End Qualification Procedure Reliability tests and criteria for product qualification UPD/Wave GNB Reliability qualification procedure Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices Steady State Temperature Humidity Bias Life Test Accelerated Moisture Resistance - Unbiased Autoclave High Temperature Storage Life Temperature Cycling Highly-Accelerated Temperature and Humidity Stress Test (HAST) Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing Temperature Humidity Storage Process qualification and transfer management Package and process maturity management in Back End
DMS@ST 8470442 DMS@ST 8521146 DMS@ST DM00187128 DMS@ST 8523158 DMS@ST 8542814 DMS@ST DM00228897	POA FCSBGA25x25 (H310-Cannes2) POA FCSBGA19x19 (H310-Liege2) POA FCBGA16x16 (H32A-L2A) Flip chip diagram (H310-Cannes2) Flip chip diagram (H310-Liege2) Flip chip diagram (H32A-L2A)

2 GLOSSARY

FCBGA Flip Chip Ball Grid Array

AFOP Au on Finger and OSP (organic coating) on ball Pads MSL JL3 Moisture/Reflow Sensitivity Level test with JEDEC level 3

TC Thermal cycling

HTSL High Temperature Storage Life THS Temperature Humidity Storage

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

The objective of this qualification plan is to define the trials to validate the transfer of copper pillar FCBGA lines from Stats-ChipPAC China (SCC) to Stats-ChipPAC China JCET plant (JSCC).

3.2 **Description of the change**

Qual Vehicle FC

➤ BOM Set Gap Analysis - FC

FCBGA 25x25					
ВОМ	SCC	SCCJ	Comment		
Substrate Configuration	Kyocera Single 25x25	Kyocera Single 25x25	Copy exact		
Substrate Technology	1-2-1 BU	1-2-1 BU	Copy exact		
Substrate Drawing	039737G(A)	039737G(A)	Copy exact		
CA flux	Senju WF6317	Senju WF6317	Copy exact		
Under fill	Namics U8410-99	Namics U8410-99	Copy exact		
BGA flux	Senju WF6317	Senju WF6317	Copy exact		
Solder Ball	Duksan Sn3.0Ag0.6Cu0.04Ni 0.5mm	Duksan Sn3.0Ag0.6Cu0.04Ni 0.5mm	Copy exact		
Tray	UBOT UB25251.60411XAU P-bin	UBOT UB25251.60411XAU P-bin	Copy exact(Same inner and outer packing box)		

Remark: SCCJ use same BOM set & supplier with SCC.

Qual Vehicle FC

➤ BOM Set Gap Analysis - FC

FCBGA 16X16					
ВОМ	Vendor	SCCJ	SCC	Comment	
Substrate Configuration	Kyocera	Single 16X16	Single 16X16	Copy exact	
Substrate Technology		1-2-1 BU	1-2-1 BU	Copy exact	
Substrate Drawing		044266F-A_00	044266F-A_00	Copy exact	
CA flux	Senju	WF6317	WF6317	Copy exact	
Under fill	Namics	U8410-99	U8410-99	Copy exact	
BGA flux	Senju	WF6317	WF6317	Copy exact	
Solder Ball	Duksan	Sn3.0Ag0.6Cu0.04Ni 0.35mm	Sn3.0Ag0.6Cu0.04Ni 0.35mm	Copy exact	
Tray	UBOT	UB16161.10614XAU P- bin	UB16161.10614XAU P- bin	Copy exact	

Remark: SCCJ use same BOM set & supplier with SCC.

3.3 **Strategy for the qualification**

2 Test Vehicles selected:

- Cannes2 / H310 in unmolded FCBGA 25x25 28nm LP SEC
- L2A / H32A in unmolded FCBGA 16x16 28 FDSOI SEC

Cannes2 was previously qualified in SCC and production is running.

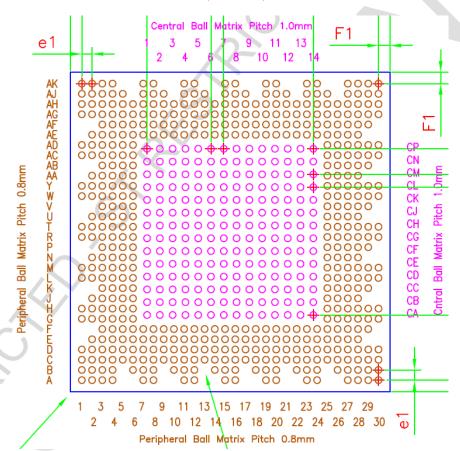
Cannes2 being in 2 body sizes 25x25 and 19x19, ST decided to focus on the biggest size 25x25 and to apply a similarity to the smallest 19x19. Indeed there is no difference in baking and humidity trials but the largest body size in TC is generating more stress in 25x25 than in 19x19.

In addition, 2 lots of L2A will be used to complete to cover all packages family.

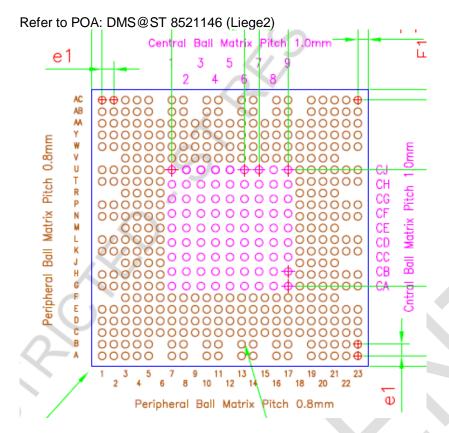
4 PACKAGE CHARACTERISTICS

4.1 Package construction note

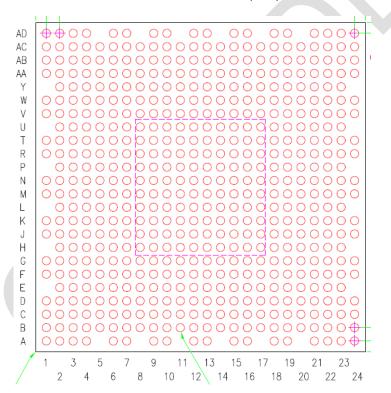
PACKAGE FEATURES					
Macro-package name FCBGA 25x25 FCBGA 19x19 FCBGA 16x1					
Body size (mm²)	25x25	19x19	16x16		
Package thickness (mm) (Without solder balls)		0.932			
Pitch (mm)	1.0 (central) 8	& 0.8 (periphery)	0.65		
Assembly site	Stats-ChipPAC China JCET				
Substrate finishing	CuOSP				
Substrate layers	1+2+1				
Solder flux for FC attach	Senju WF6317				
Underfill	Namics U8410-99				
Ball attach flux	Senju WF6317				
Solder balls composition	SÁCN 306				
Solder balls diameter	0.	5mm	0.35mm		



4.2 Test vehicles definition


DIE & PRODUCT FEATURES				
Technical code/ Line	H310 H310 H32A			
Package description	FCBGA 25X25X1.50	FCBGA19Sqx1.5	FCBGA16X16X1.32 -	
	700 F30/14 P1/0	449 F23 P.8/1 B0.	552 P0.65 B0.3	
Diffusion process	CMOS028_LP_ISDA	CMOS028_LP_ISDA	CMOS028FDSOI_FDY	
Wafer fab		Samsung (SEC)		
Wafer diameter		12"		
Wafer thickness (µm)		775 -> 300		
Die front finishing	PEOX +	SiN + PIX	PEOX + SiN + PIX	
Die back finishing	LAPPED	SILICON	LAPPED SILICON	
Bumping		Copper pillar		
Bumping house	Winstek (ex- Stats-ChipPAC Taiwan)			
Bump composition & height	Cu/Ni/SnAg 1.8 %			
_		40/3/22µm		

4.3 Package ball out


Refer to POA: DMS@ST 8470442 (Cannes2)

Refer to POA: DMS@ST DM00187128 (L2A)

5 RELIABILITY TEST PLAN

5.1 Sample size required

Trials Sample size per lot:

Temperature cycling 50 High temperature Storage 50 Temperature & Humidity Storage 50

5.2 Lot definition

Lot Nb	Line	Final test location	Reliability location
1	H310 25x25	ST GNB	ST GNB
2	H310 25x25	ST GNB	ST GNB
3	H32A 16x16	ST GNB	ST GNB
4	H32A 16x16	ST GNB	ST GNB

Note: These lots must be with different top marking for traceability versus the Assembly reports.

These lots must be manufactured at different days (with different machine set up).

Detailed plan in below chapter will refer to Lot #.

5.3 **Test plan summary**

Test	Test short description					
	Method	Conditions	SS/Lot	Lot n#	Duration	
MSL JL3	Moisture sensiti	vity level test with JEDEC level 3				
	JEDEC-020	- SAM (T-SCAN + C-SCAN) @ time 0	150	1		
		on 2x 5 samples per lot	150	2		
		- 24h bake @ 125°C	150	3		
		- 192h @ 30°C / 60% RH	150	4		
		- Reflow simulation (3 times) with standard				
	1	JEDEC profile @ 260°C peak				
		- SAM (T-SCAN + C-SCAN) after reflow				
		on the same 2x 5 samples per lot				
MSL+TC	Moisture sensitivity level test followed by Temperature cycling					
	JESD22-A104	Ta= -40/+125°C	50	1	1000 cy	
		Steps: 0, 100, 500, 1000 cycles	50	2		
		SAM (T-SCAN + C-SAM) after 1000 cycles	50	3		
		on 5 samples per lot	50	4		
MSL+HTSL	Moisture sensitivity level test followed by High Temperature Storage Life					
	JESD22-A103	Ta=150°C	50	1	1000 hrs	
		Steps: 0, 168, 500, 1000 hours	50	2		
		SAM (T-SCAN + C-SAM) after 1000 hours	50	3		
		No SAM	50	4		
MSL+THS	Moisture sensiti	vity level test followed by Temperature humidity sto	rage			
	JESD22-A118	Ta=85°C/85%Rh	50	1	1000 hrs	
		Steps: 0, 168, 500, 1000 hours	50	2		
		SAM (T-SCAN + C-SAM) after 1000 hours	50	3		
		on 5 samples per lot	50	4		

6 PACKAGE ORIENTED TESTS DESCRIPTION

TEST NAME	DESCRIPTION	PURPOSE
MSL: Moisture / Reflow Sensitivity Level test	Moisture/Reflow Sensitivity Level test sequence simulates storage and soldering of SMD (surface mount devices) before submitting them to the reliability tests. Out-of-bag floor life storage and soldering are modeled by the following test sequence: - bake to completely remove moisture from the package; - moisture soak according to the package moisture level; - IR reflow.	It aims to validate the moisture sensitivity level of the package, and prepare it to the stress of additional reliability tests, thus enabling a good representation of the life of the packaged product. The aim is to check that the chip and plastic package withstand the stress due to report on card. Depending on their technology, packages may absorb moisture during their transportation and/or storage, moisture that is released during the soldering operation. At this step, the moisture absorbed is vaporized due to high temperature of solder report process. This phenomenon can create plastic swelling, "pop corn" effect, and cracks which eventually results in wire breakage, passivation cracks, and delamination.
TC: Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere (thermal gradient typical 10 C/min).	To investigate failure modes related to the thermomechanical stress induced by the different thermal expansion of the materials interacting in the diepackage system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, and die attach layer degradation.
HTS: High Temperature Storage	The device is stored in unbiased condition at the max. Temperature allowed by the package materials, sometimes higher than the maximum operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress voiding.
THS: Temperature Humidity Storage	It is a highly accelerated test which employs temperature and humidity under non-condensing conditions to accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through. Bias is not applied in this test to ensure the failure mechanisms potentially overshadowed by bias can be uncovered (e.g. galvanic corrosion).	To evaluate the reliability of non-hermetic packaged solid-state devices in humid environments This test is used to identify failure mechanisms internal to the package and is destructive.

CONFIDENTIALITY OBLIGATIONS:

This document contains sensitive information.
Its distribution is subject to the signature of a Non-Disclosure Agreement (NDA).
It is classified "RESTRICTED DISTRIBUTION".
At all times you should comply with the following security rules
(Refer to NDA for detailed obligations):
Do not copy or reproduce all or part of this document
Keep this document locked away
Further copies can be provided on a "need to know basis", please contact your local ST sales office.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING

APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com